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Analysis of a cooperative stereo algorithm

by

D. Mar r , G. Palm** and T. Poggio**

t
SUNNAIfl’ : Marr 6 Poggio (1976) recently described a cooperative
al gorithm that solves the correspondence problem for stereopsis. This
ar ticle uses a probabilistic technique to analyze the convergence of
t h a t a lgor i thm , and derives the conditions governing the stability of
the solution state. The actual results of applying the algorithm to
random—dot stereograms are compared with the probabilistic analysis. A
satisfactory mathematical analysis of the asymptotic behaviour of the
a l g o r i t h m  is  possible for a suitable choice of the p arameter value s and
load ing  ru les , and again the actual performance of the algorithm under
these cond i t i ons  is compared wi th  the theoretical predic t ions .
F i n a l l y ,  some problems raised by the analys is  of t h i s  type of
“coopera t ive ” a l g o r i t h m  are briefly discussed.
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Cooperative computation 2 Marr , Palm 6 Pogglo

* C

1 Introduction

The extraction of stereo-disparity information from two Images

depends upon establishing a correspondence between them. In a recent

article , Marr 6 Pogglo (1976) analyzed the nature of the correspondence

computation and derived a cooperative algorithm that implements it.

Although several examples were given of the performance of the

algorithm on random-dot stereograms (Marr 6 Poggio 1976, figures 3-6),

space did not permit a thorough analysis of the fixed points of the

algor ithm , or of its convergence. In this article, we shall examine

these issues in detail.

1.1 ComputationaL structure of the correspondence problem

Marr 6 Poggio (1976) argued that the stereo problem may be reduced

to th at  of matching two pr imi t ive  descriptions , one from each eye.

They showed that the central problem is to find a correspondence

between the left and right descriptions, that satisfies the two rules

(p. 284 and Marr, 1974):

(RI) Uniqueness : Each item from each image may be assigned at most one

disparity.

(P2) Conttnutt ; Disparity varies smoothly almost everywhere.

By constructing an explicit geometrical representation of these two

rules (figure ic), they were able to derive a cooperative algorithm

— —— _~~~~ 
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1. Figure la shows the explicit structure of the two rules Ri and *2
for the case of a one-dimensional tmage, and it also represents the
structure of a network for Implementing the algorithm described by
equation 1.1.1. Solid lines represent ~inhibitory w interactions, and
dotted lines represent ~excitatoryW ones. lb gives the local structure
at each node of the network la This algorithm may be extended to two-
dimensiona l i.q.s, in which case each node in the corresponding
network has the local structure shown in ic. cMarr 6 Pogglo 1976 figure
2).
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Cooperative computation 4 Marr , Palm 6 Po gg io

tha t implements them. If one thinks of figure la as a network , with a

cell at each node, the uniqueness rule RI mean s that only one cell  is

“on ” along each vertical or horizont al l ine (the l ine  of s ight  f rom the

left and right eyes); and the continuity rule R2 implies that solutions

(its asymptotic states) tend to spread along the dotted diagonals

( l i n e s  of constant  dispari ty) .

I :~ order to implemen t these rules , each cell sends “i n h i b i t o r y ”

connections to all other cells along the same vertical and horizontal

l i n e s , and exci ta tory  connections along its diagonal. This g ives  the

local  ne twork geometry shown in f igure  lb. For a two-dimensional

image , the only  change needed is to make the exci tatory neighborhood

two-thmensional, which gives the l ocal geometry shown in f igure  Ic.

Let Cz,y,d denote the state at time t of the cell corresponding to

coordin ate (x, ii) on the left retina, matching position (x+d, y) on the 
. -

right retina. Let S(z~d) denote its excitatory neighborhood (the disc

in figure ic), and O(x ~d) i ts  inhib i tory  neighborhood (the hor izonta l

and vertical lines in figure ic). The algorithm implemented by the

ne twork  may be written (Man 6 Poggio 1976 , equation 2)

c(t~
) =c ~~~~ c(t) - y +x ,y;d x ’ ,y’;d’ x ’ ,y’;d’ x,y;d

x ’ ,y ’ ,d’ cS(x ,y,d) x ’ ,y ’ ,d’ cO(x ,y,d)

where ç is a threshold function that takes values 0 or 1, and . is an

“i n h i b i t i o n ” constant.

This  a r t i c l e  i~ concerned wi th  the properties of the algorithms

d e f i n ed by equation 1.1.1 or, equivalently, with the behavior of the

2. - .
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corresponding network (fig. 1). The two inputs to the algorithm or

network , from which the initial state of the network is determined , are

usua)ly two matrices whose entries consist of 0’s and l’ s. The second

matrix is constructed from the first by x-translations of regions of

it. As we shall discuss later the algorithm defined by equation 1. 1. 1

has some analogies with game s like “life”.

The plan of the paper is as follows: Section 2 describes the

l oading rules, which determine the initial state from the inp~.at

stereograms , and also defines the algorithm precisely. The relations

bet ween the f ixed points  of the a lg or i thm and the states tha t satisfy

the two condi t ions  RI and R2 are then discussed (section 3). A

probabi listic approach to the convergence of the algorithm is outlined

In section 4. Actual computer simulations of the algorithm are

compared w i t h  the probabi l is t ic  analysis , and the range of parameter

values that yield a “nice” convergence is discussed. Some special

situations are also analyzed (section 5). A suitabl e (and restrictive)

choice of the parameter values in eq. 1.1.1 allows a satisfactory

mathematical analysis of the algorithm: section 6 is devoted to such

an approach. Finally, we briefly discuss the mathematical problems

raised by the analysis of this type of “coopera ti ve” algorithm.

— 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Cooperative computation 6 Marr, Palm 6 Poggio

2 The algorithm

2.1 Loading conditions

Let the positions on the left and right retinas be denoted by Li , ,
and 

~~~ 
respectively. These array s take the values 0, indica t ing  the

absence of a feature, or 1, indicating the presence. The initial

condition of the network , for stereogram L, R is given by

2.1.1 C v; d ‘ L~~, .

w i t h i n  the appropr ia te  range d of dispari ty.

2.2 The algo ri th m

The relation between states at times t and t+ 1, is given by the

recurrence relation eq 1.1.1, where e is a sigmoid function in general ,

and here is taken to be the threshold function

2.2.1 .(u)~~~I i f u � ~~,

0 otherwise.

• is a constant, known as the “inhibition constant”. The number of

dispar ity layers d we shall denote by D, and we shall let ?l be the

diameter of the excitatory neighborhood S(x.~ ,d). In the example shown

in figure 2, M z 5, and the total number of cells in an excitatory

neighborhood is 13. The number less the cell itself is 12, which we

shall denote by I. The number of cells In an Inhibitory neighborhood
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2. The excitatory neighborhood (figure lc) used in our implementation
has a diameter of 5, and contains 13 cells. The central cell, marked
by a square, receives at most 12 excItatory inputs from its neighbours.
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Cooperative computation 8 Marr, Palm 6 Pogg io

of a given cell is 20 — 2, excluding the cell itself.

2.3 Parameter values and some facts

The parameter values chosen for our original algorithm 1 (Marr 6

Poggio, 1976) were g • 12, 0 • 7, • 2, 9 = 4, with the excitatory

neighborhood shown in fig. 2. Among other constraints, these parameter

value s were chosen to satisfy the following conditions:

2.3.1 in the absence of inhibItion and of a contribution from the term

C0, straight line borders should fill in as shown in fig. 3a. This is

true when I ~ 4.

2.3.2 straight line borders between two “filled—in ” planes at

different disparities should not grow. This requires that 4 — 2• < 9.

2.3.3 with the particular values chosen:

-- a pattern of five connected points is the smallest configuration

tha t can survive (see fig. 3b). it will not grow unless one other

point is added (e.g. at P ~n fig. 3b).

-- the sharpest convexity capable of surviving against one inhibition ,

with the help of a contribution from C is a right—angle. Fig. 3c

shows tha t the condition is 6 - • z 9.

—- a convex or flat border cannot grow against one Inhibition; it can

grow only into scattered active cells.

-- the least concave patterns capable of growing under two inhibitions -
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3. The total excitatory contribution for various configurations of
“on” cells. The excitatory neighborhood (figure 2) Is shown with open
circles, except for the central cell which Is indicated by a square
because it makes no contribution tO the total excitation. With a
threshold of 4.0; 3a shows that a flat border will grow in the absence
of inhibition, 3b exhibits the smallest stable configuration, 3c the
sharpest stable convexity, and 3d 6 e show concavities that fill In.
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are shown in f igs .  3d 6 e. They fill in by one or two cells and then

are no longer conc~.ve enoug h to grow under two inhibitions.

3 Invariant states and the matching rules

The matching rules for stereopsis that were given in the

introduction take the following form for the algorithm discussed here:

(1) Uniqueness : Each item from each image may be assigned at most one

di spa r i ty  value.

(2)  Continutt ~ : Disparity does not change almost everywhere.

Comment: P2 has now taken a slightly different form. This is because

dispar ity takes only discrete value in this algorithm. Images

containing smoothly varying disparities may be handled by a modi f ied

vers ion  of the a lgor i thm , which w i l l  be discussed in section 5.

~e now show that the states in which these two rules are obeyed

are for a l l  practical purposes invariant .  i.e. they are f ixed points  of

eq. 1.1.1, and once achieved, do not change in subsequent iterations.

3.1 Configurations that satisfy the matching rules are invariant

The cont inui ty  and uniqueness conditions mean that, for each value

~
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4. The solid lines indicate solution planes Cd figure la). Lines of
sight PQg, 

~QL intersect solution planes at only one point P, except
possibly near the (rare) disparity boundaries like A. Thus
configurations that obey rule Al are invariant.

___________________________________________________________________________________________ ~~~~~~~~ -~~~~~ ,~~~~~. ,j
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of y, a cross-section of the network has the appearance shown in figure

4 (the continuity condition also requires that the active segment has

some extension in the y direction). That is, the “on” cells in the

network form extended segments like that shown as AB (continuity), and

most lines of sight (.~~ . PQ~, PQp) intersect only one of these
extended segments (uniqueness). Some lines of sight (e.g. to D) may

intersect two planes: this occurs only at the (rare) boundaries at

which disparity changes. The physical situation is that one surface is

obscuring the other.

We show now that these configurations are invariant if the

parameter values are appropriate.

i Interior points like P are certainly invariant if

(t) -

8.1.1 Cz’.y ’1d � 0
x ’ ,y ’,d’ c S(x,y,d)

if P is interior in both x and y.

(ii) Eq. 8.1.1 ImplIes that boundary points like A (fig. 4) on a

straight boundary (in the z—~ plane) will not grow into the interior of

an ex isting segment at another disparity provided that

3.1.2 £ 12 .1  - 21 0

Concave pieces of boundaries can in principle grow, but not much for

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~=~~.‘~1
-:.--. - 

~~~~~~~~~~~~~~~~~~~~~~~~~~
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S. The two possible stable edges f~r flat bouniaries. Depending on
the initial conditions, edges can occur that are defined by the line
where cells begin receiving one (A) or two (~) inhibitions f rom the
other surface.
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Cooper ative computation 14 Marr , Palm 6 Pogg io

two reasons. Firstly, boundar ies cannot be ever ywhere concave, and
secondly, w i t h  our par t icula r  excitatory neighborhood and parameter

val ues (see figs. 3d 6 e) the amount a concave border can fill in is

li m ited to at most two elements. Fig. 5 shows the two possibl e stable

edges for f l a t  boundaries.

3.2 Plot all Invariant confIgurations satisfy the matching rules

S t r i c t l y  speaking, the converse resul t to that of the last section

is not true. A counter—example to the uniqueness condition that  is

s table  w i t h  our parameters appears in figure 6. Interior points of a

plane , wholly surrounded by other points in the same sheet, can survive

inhibition from two other cells and so can boundary points where the

br~undary is straight. In figure 6b, points of these two types are the

o n l y  ones tha t occur. A counter-example to the continuity condition

appcars in figure 7, and it is left as an exercise to show that this

- 
- pattern is inv ar ian t .  In practice , nei ther  of these configurations can

ac tua l ly  develop from a random-dot stereogram.

When the input consists of two stereograms portraying a single

surface, the probabilistic analysis of the next section shows that with

h i g h  probability, the solutions will in fact obey the uniqueness

concUt ion.

If the input stereograas portray a transparent surface in front of

another surface, the algorithm with our parameter values will usually

fail to represent the input accurately, tend ing instead to develop a

solut ion tha t obeys the two conditions and consists of a mosaic of

- - -  

~~~~~~~ ~~~~~~~~~~~~~~~~~~~ .
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6. A stable geometrical configuration that violates the uniqueness
condition (6a). The central square consists of two planes, one at
disparity 2 and one at disparity 0. This configuration is a stable
state of the algorithm, in the sense that if it is loaded directly into
the network, an invariant configuration is quickly reached in which
both planes are represented. Figure 6b demonstrates this. The
stereogram is marked Left and Right, and 5 iterations of the algorithm
are shown. If the network is loaded in the usual way, however , the
algorithm develops a solution that is a mosaic of patches from the two
levels (6c).
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patch es  f rom the two levels ( f ig .  6c) . Wi th  the parameters we chose ,

there seems to be no convenient and precise defin ition of the stabilit y

of configurations that forces the uniqueness and continuity of

solutions. For instance , even it one requires in addition to

invariance some kind of spatial stability 2, the counter-example of fig.

~ cannot be avoided , although a reasonable “spatial stability ” S

condit ion would exclude the counter-example of fig. 7.

If one could exclude significant overlaps between surfaces lying

at different disparities , it appears that one can derive the continuity

conditions for invariant configurations. The argument is based here on

the n o t i o n of a hole 3, and shows by s traightforward geometry tha t holes

are not invariant.

in one dimension (in which the network consists only of the part

shown in fig. la) the problem of this section becomes easier.

Apparently, the only way of reducing the 2-dimensional problem to a

satisfactory state is by changi’~g the parameter values (see section G).

4 Probabilistic analysim of the algorithm

We have been unabl e to obtain general resul ts about the

convergence of this type of algorithm. Standard approaches -- e.g.
L i a p u n o v - ty p e  methods and the usual f ixed point theorems —- apparently

fail in this situation for reasons that we shall mention in the

(IL scuss ion.
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Cooperative computation 20 Marr , Palm 6 Poggio

‘S.

The probabi l i s t ic  analysis given here, although not completely

s a t i s f a c t o r y ,  nevertheless  provides use ful information about the

a lgo r i t h m ’s convergence for random-dot stereograms. S t r i c t l y  speaking

its application is restricted to inputs with a random structure.

The idea behind our analysis is that the cells in the network can

be divided into populations on which the excitatory and I n h i b i t o r y

inferences are statistically homogeneous (cf Marr 1971). Our analysis

is very specific to the algorith, of eq. 1.1.1, because the way in

which the cells are divided into populations depends critically on the

geometry of the algorithm and on our a priori knowledge of its

invariant state.

4.1 Assumptions and notation

The a l g o r i t h m  has the structure shown in f ig .  1 and the network is

loaded from the input as specified by eq. 2.1.1. We shall assume tha t

the inputs have the following properties.

4.1.1 the l’s in each i mage occur randomly with probability v, and the

au toco r r e l a t i on  of each input  sequence (for any given y) Is a Xronecker

8.

4.1.2 the input admits a unique solution surface that is large enoug h -

to neglec t  boundary effects .

-_——~~~~~~~~~~~~~~~~~~ : : ~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~
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Cooperative computation 21 Marr, Palm 6 Pogglo

Condition 4.1.2 means that the left input Is equal to the right one,

modulo x-translation . Condition 4.1.1 Implies that in the i n i t i a l

s t a t e  of the network C, the density of l’ s on the solution layer equals

v, and elsewhere i t  is ,,2~ We subdivide the cells into f ive

popu la t ions , by c l a s s i fy ing  them In two ways:

(i~ according to whethe r or not they are a “on” in the i n i t i a l  s tate

C0, and

(ii) according to the number of active inputs from the images.

We draw both the p opu lat ions 0 and 1 from cells that lie on the

solution layer; population 0 is defined to receive no active inputs

Iron the image , and population 1 receives two. Notice that there are

no cells in the solution layer that receive exactly one active input.

The other three populations that we define refer to cells that lie

off the solution layer; population 11 receIves two active inputs from

the image , populat Ion 10 receives one , population 00 receives none.

The five populations (0, 1, 11, 10, 00) are exclusive and exhaustive.

We denote by p0(t). p1(t) . etc . the probabil i ty that a cell in the

respective population Is “on ” at time t. The goal of our ana ly s i s  is

to express the values of the p~
(t) in terms of p,~(t—1 ) for the var ious

populations 
~~~
. This allows us to examine the convergence numericall y,

and we say tha t a solution Is achieved at time T when

p0(t) ~ 
p1(t ) z 

~ and

p00(t) p10(t) p11(t)  ‘ 0, for every t � T.

The c r i t i c a l  assumption here is that the quantity p~ (t) completely

descr ibes  the s t ruc ture  of active cells in the respective populat ion

- -. ;- - — . - - —~~S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -  __________



Cooperative computation 22 Marr , Palm 6 Poggio

~S.

~~~~. This assumption Is true for the i n i t i a l  i t e ra t i on  and on ly

approximate thereafter. We shall discuss this point at the end of the

section.

4.2 Formu lae

The state of a cell (x.y.d) at time (t.I) depends upon the number

of a c t i v e  c e l l s  in i t s  exc i ta tor y  S(x,y,d) and Inhibitory O(x.y , d)

neighborhood s at time t.

If we denote the populations to which the cell belong s by w, (,r

running through the five populations 0, 1, 00, 11, 01), let us define:

to he the probability that exactly r cells are “on” in the

excitatory neighborhood S(z.y .d) at time t and

to be the probability that exactly r cells are “on” in the

Inhibitory neighborhood O(z,y.d) at time t.

It is convenient to introduce some further quantities:

q3 ( t)  is the probability that a ?iven cell on the “solution ” plane

is active at time t.

q~,(t) is the probability that a given cell elsewhere in the network

is active. 

—- --~ - -.~ - - -—-5 - -. ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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q..(t) is the probabil i ty that a given cell is active in the

i nh ib i to ry  neighborhood of a cell in the population 0.

q,(t )  is the probability that a given cell is active in the

i nh ib i to ry  neighborhood of a cell in the population 1.

Then:

4.2.1 q 3 ( t)  z p0(t).(1 — p.) • pj (t) .y

q~ (t )  z p00(t).(1 - p.)2 • p11(t) . 2, ’(I — p.) • p11(t).v2

q_ (t) • p00(t).(1 — p.) • p01(t) .

q,(t) z p11(t).p • p10(t).(1 — p.)

Writing 8(n. Is an) mCn.1
1(1 — f)~~n, where mCn is the binomial

coe f f i c i en t , we have immediately

4.2.2 e1(r) z e0(r) ‘ 8(r, qj(t). 1)

i1(r) 1(r. q~(t)a 2D 
— 2)

i0(r) .r B(r. q_ (t), 20 - 2)

e11(r) • e00(r) • e10(r) z 8(r, q
~
(’t)a (~

The remaining i, are more difficul t to obtain, since the inhibitory

contributions to cells lying off the solution plane come from cells

lying on the solution plane and from cells lying off the solution

plane, and these two populations obey different statistics. In fact 

~~~--- .-
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4.2.3 i11(r) • (p1(t)J
2.8(r — 2 . q~(t). 20 — 4) •

• 2p1(t).(1 — p 1(t)).8(r — 1, q~(t), 20 — 4) •

• (1 — pj(t)J 2.8(r. q~ (t),  20 — 4)

(p 9(t)J
2.B(r - 2 , q_( t ) s  20 - 4) •

• 2p0(t) . ( 1  — p0( t) ) .B (r  — 1. q..(ti, 20 — 4) •
• (1 - p0

( t) ) 2 5_ 8(r . q..(t), 20 - 4)

The final case ~~ is especially awkward, because along one ef the

inhibitor y lines the probability of a cell being “on” is q~ and along

the other diagonal it is g,.

4.2.4 t10(r) ‘ Z (pj (t)B(k - I. q~(t), 0 - 2) +

(1 — p 1(t))8(k . g~(t), 0 
— 2))

(p0 (t).B(r-k+1 , q.(th 0 — 2) •

(1 — p0(t))8(r—k, q_ ( t) 1  0 — 2))

We now need to relate the p
~
(t.1) and the p

11
(t) in terms of the e~. and

For each cell population we know the distributions of incoming

e x c i t a t i o n  and i n h i b i t i o n , and we know that a cell will be on whenever

the exc i ta t ions  exceed the inhibi t ions  by at least 9. Hence

4 .2.5 = et (n) . j t ( )
n =

~~~
toE

m = O t o 2D-2
-( n - c m e

~- -:5-’~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..:
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where l,r .8 - 1  f o r w .1 ,, ’Il

• 8 otherwise

If the input term C
~~y,d of 

eq. 1.1.1 is neglected , 0~. • 0 for a l l  w.

-
S The eq uat ions  4.2.6 are too compl ex to be solved a n a ly t i c a l l y .

N u m e r i c a l  so lu t ions  were however obtained for various value s of the

parameters and some of the results are given in table 1 and f i g u r e  8.

4.3 Range of parame ter values and comparison with actu~L runs

Figure 8 exhibits the performance of the algorithm for stereog rams

having densities of from 0.5 to 0.05. Table 1 gives the statistics

th.it were measured from these runs , and also the parameters predicted

by the  p robab i l i s t i c  theory. The values obtained from the theory match

those from the algorithm quite well for the first iterat ion , but except

for  the case p. • 0.05, they diverge quite rapidly thereafter, and even

t h i s  case diverges  by the third iteration.

We have already noted the main reason for the discrepancy. The

assumption that the statistical structure of various populations is

p u r e l y  random ( ins ide  each population and between populations ) holds

exactly for the first iteration but only approxim~.tely thereafter ,

bv ’cause the operator of f ig.  ic has a local structure which can

pre serve l ocal clu ~ter s of active cells. There are two ways In wh ich

t h i s  a f f e c t s  our probabi l i s t ic  description for the second and

subsequent i te r at ions .  The f i r s t  is that clusters are more s table than

— 
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Stereogram dens ities are 50% (8a~, 25% (8b), 10% (8c) and 5% (8d).
Parameters are as shown in table 1.
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S.,

the assumption of randomness would predict. Thus clusters forming on

the splution layer will in certain circumstances change the rate of

- 

- convergence predicted by the randomness assumption.

The difficulties arise where clusters form off the solution layer.

These wi ll again tend to be more stable than our analysis assumes, but

their effect acts against convergence. However, we shall argue that

the pr obab i l i t y  of large “wrong ” clusters is small for most pat terns.

In fact, the typical value of the probability that a wrong cell is “on”

after the first iteration lies around 0.1. The probabilit y (after the

first iteration) of a self-supporting 3 x 3 cluster at a given

position in a wrong layer (assuming that the cluster was absent in the

initial state and accepting the oversimplified assumption of randomness -

after the first iteration) is about i0~~, and hence less than io~ tha t

one ex ists off the solution plane somewhere in the network.

A cluster of this size may survive permanently, because every

element In it has at least 6 cells in Its excitatory neighborhood , and

this is enoug h to resist 1 inhibition). The probability of this or

something larger arising by chance is so small that if it occurs it is

li kel y to be a consequence of the particular image. In fact, some

smal l  “wrong ” pa tches do sometimes occur (Inspect Marr 4 Poggio 19Th

fig. Sd) but such instances can usually be traced to an accidental

correlation in the image. In this sense, extended patches are

“cor rec t ”  solut ion regions.

The second ef fec t  that leads to discrepancies between the theory

and the behavior of the a lgor i thm is also a side-effect of clustering,

______ .~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~—~ ——- ~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ 
- -
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(.5

since as well as being stable, the clusters tend to concentrate “on”
ce l l s  more than the randomness assumption would predict. For example ,

at i t e r a t I o n  2 of the case p • 0. 25 (fig. 8b) , althoug h the overall

density of ones on the solution plane is about 0.39, it  i s far  f rom

true that each cefl can expect to find 0.39E “on” cells in its

excitatory neighborhood. Cells in the filled in regions have almost

all their neighbors on, whereas those in the interstices have none.

Convergence Is achieved by a growth outwards that fills in the blank

regions, but although it is steady, it is necessarily slower than the

theory  predicts.  -

5 Observations

5.1 There is a wide latitude in the range of parameters for which the

network converges. Table 2 shows f i r s t l y  the wide range in stereogram

density p. that is tolerated by our parameters (with f ixed 0) , and

secondly,  for a fixed value of p (p 0. 5) gIves some idea of the range

of the other parameter values for which the network will converge.

Note that  in the implementat ion described by Marr 6 Poggio ( 1976) , the

threshold  was not f ixed , but was determined by the density of “on ”

ce l l s  in the network. This allowed solution to the matching problem

over a very wide range of dot densities.

5.2 Lct us de f ine  the probabi l i ty  that a cell on the solution layer  Is

- 
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TABLE 2. The algori thn of eq. 1. 1 .1 converges for a wide range of control
parameters. Tables 2*, b show convergence for ‘~

, • 0.5 and v 0.1 with
the same parameters. Table 2c shows convergence for an entirely different
set of parameters.

2a. v a O. 5, E 1 2 ,D .7 , E .2 , e 3.0

Iteration 
~r ~w ~O ~l ~OO ~IO ~ll

1 .50 .15 .98 .026 .61 0 0
2 .57 .13 .15 .997 0 0 .54
3 .69 .039 .995 .39 .16 0 0
4 .97 .007 .935 1.0 0 0 .029
5 1.0 0 1.0 1.0 0 0 0

2b. ~ 0.1, E — 12, D • 7, E • 2, e • 3.0

Iteration p1 p00 p10 p11

1 .11 0 .11 .106 0 0 0
2 .17 0 -.14 .39 0 0 0
3 .35 0 .32 .62 0 0 0
4 .86 0 .85 .96 0 0 0
5 1.0 0 1.0 1.0 0 0 0

2c. v 0.5, £ • 2, 0 • 7, E •0.5,8 • 1.0

Iteration 
~r ~w 

po p1 p00 p10 p11

‘I .40 .11 .75 .058 .43 0 .010

2 .55 .23 .11 .99 .004 0 .90
3 .45 .083 .78 .11 .32 0 .006
4 .59 .20 .20 .99 .003 0 .80
5 .51 .063 .82 .20 .24 0 .009
6 .65 .17 .32 .99 .003 0 .66
7 .62 .042 .87 .36 .15 .001 .014
8 .76 .11 .54 .97 .002 0 .43
9 .82 .021 .94 - .71 .053 .002 .026
10 .94 .027 .88 ‘.995 0 0 .11
11 .995 .009 .996 .995 .001 0 .031
12 1.0 .004 1.0 1.0 0 0 .014
13 1.0 .002 1.0 1.0 0 0 .007
14 1.0 0 1.0 1.0 0 0 .003
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“on” at time t to be

Pr(t) z v.p1(t) • (1 — p)p0(t)

and the  probability that a cell off the solution layer is on at time t

as

p
~
(t) ~

- v2.p11 (t) • 2r(I — p)p 10(t )  • (1 —

In  a successful  run , p,. converges to 1 and 
~~ 

to 0. With our

p a r t i c u l a r  parameters , convergence is monotonic if it occurs. This is

not t rue , however , for the individual  quant i t ies  p 1. 
~~~~~~ 

p11. p 10. p00t

ne it her is it true of Pr and p
~ 

for al l  values of the parameters  (see

t ab l e 2 ) .

5.3 We have already seen that the sharpest local corner capable of

resisting 1 inhibItory input Is about 900 or more, hence thin , sharp
regions will tend to be rounded off local ly (see Marr 4 Po ggio 1976

fig. Sc). The exact shape of the input pattern Is preserved only up to

this limit.

5.4 fltnt i ’ium s ize vs.  d isp ur i tg

A na tura l  consequerce of the structure of the algorithm is tha t

the m i n i m u m  resolvabl e area of a sma ll pattern against a background

increases  w i t h  d i spa r i t y  (see Marr 6 Poggio 1976 , f ig .  6) . We give  an

~lL 
‘ 
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9. The minimum resolvable area of a small pattern against a background
increases with disparity. To prevent the background from filling in
completely, the length of the patch in the x—dlrection lust be at least
4 • 2 (9a). 9b shows the circles of diameters 3, S and 7 used in
figure 6 of t4arr 4 Poggio 1976.
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estim ate of the dependence of minimum patch size on disparity

difference. Consider a section for some fixed u of the network (fig.

9). Assume that the patch and background regions are filled in. The

condition for growth at a point (z. ii. d) under I inhibition is that

the number of “on” cells in an excitatory neighborhood should be not

less than 8 • ~ - C
0 • 5 or 6, depend ing on the initial conditions.

From fig. 3 we see that flat or convex regions will not grow whereas

concave regions will. Hence our small patch will not tend to grow ,

whereas the background will spread until stopped by two inhib itions.

We see from fig. 9a that to prevent the background from filling in

completely (which would subsequently destroy the patch because convex

borders cannot survive two Inhibitions), the length of the patch in the

x direction must be at least d • 2. This condition must hold for at

least three adjacent lines aligned in the y direction. Fig. 6 of ~.Iarr

6 Poggio .1976) illustrates the approximate validity of this relation.

Fig. 9b shows the sizes of circles of diameter 3, 5, and 7 used in the

Input for tha t figure. These precise patterns do not necessarily

emerge in the appropriate layer of the network because of the random

nature of the borders. The circle of diameter 3 contains no 3 x 3

subset and therefore does not survive at any disparities. The circle

of diameter S contains one 3 x 3 square and survives as expected at

disparity 1; it also survives, apparently accidentally, at disparity 2,

but not at disparity 3. The circle of diameter 7 contains one 5 x S

square and thus survives at disparity 3.

A t r i v i a l  consequence of th is  analysis  is that  hor izon ta l  s t r i pe s

5-— — _______________  5--— S.-. s~~~~~~~~~~~~ _ 5~
5
~~ 

55 5
~~~5-~~~~~~~~~~~~~ 5-



- W5- 5-” ~~~~~~ 5~~~~~~~~~~ 5-55 5’5- 5- ”5-r~— -~ --  - 5 -~~~ -~~~~~~~r’- -—-..- r’W” r~~~~

- 

- Cooperative computation 37 Marr , Palm 6 Poggio

(parallel to the x axis) are in general more stable than vertical ones

(parallel to the u axis). The minimum thickness for horizontal stripes

is about 3 and is independent of disparity whereas the minimum

thickness for vertical stripes is about d • 2 (see fig.  10) .

5.5 Uncorrelated areas

If there exists a sufficiently large area in the input where there

is no correlation between the two images, the network will detect it

(see figs. S and 6 of Science). After the first iteration (with our

parameter val ues and v - 0.5) only a few cells remain “on” in the

uncorrelated region , but provided the region is sufficiently large they

will receive no inhibition from the surrounding more organized layers.

Hence those cells that are on may act as germs for small regions that

have become stabl e by the time the surround encroaches upon them, e .g .

fig. Sd of Marr 6 Poggio (1976). Relatively small (<- d) uncorrelated

areas probabl y have to develop stable platelets to survive (see fig. 6d

of Marr 6 Pogglo 1976), and large uncorrelated areas decompose into a

random mosaic of stable platelets (see figure 11).

tincorrelated areas can be recognized as such during the read-out

from the network , when the l’ s that appear in the solution found by the

network are used to establish an explicit correspondence between the

two images.

5.6 Ezten.ston to images 1* which disparity varies co*tinuousiy

The a l g o r i t h m  of eq. 1.1.1 wi th  the l oading rules of eq. 2.1.1 can

- 
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10. Thin vertical and horizontal stripes of various disparities. The
left and right stereograms are shown with the stable network solution
to them. The stereograms are 100 by 100, and consist of stipes with
the f o l lowing  coordinates (z or y), thicknesses s and disparities d:

lOa lOb j Oe
z s d y s d y s d
15 2 —1 15 2 -1 15 2 .1
30 3 -1 30 3 -l 30 3 #1
46 3 -2 45 2 -2 46 2 #2
60 4 -2 60 3 -2 60 3 .2
76 4 -3 75 2 -3 75 2 .3
90 6 -3 90 3 -3 90 3 #3
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11. The central band is uncorrelated . It decomposes into a random
mosaic of patches, each of which is eventually stable.
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deal only with i mages having discrete disparity values. The disparity

in natural images commonly varies continuously. There are two

approaches to this problem. One is to incorporate the representation

of continuous values directly into the algorithm , and the other is to

use the  same algorithm , but with special rules for loading it and for

i nterpreting its final state.

The first approach would clearly lead to a considerably different

alg orithm , perhaps more along the lines of the networks studied by

~..ilson 6 Cowan (1973), (see also H. •R. Wilson 1977). Such an algorithm

could not be treated within the framework of this article.

The second approach does not require any changes in the a n a l y s i s

of the algorithm itself. One could, for exampe, define the loading

conditions as follows:

Let ~ be the disparity attached to a possibl e correspondence

between items in the left and right images. For integral 4,

5.6.1 If ‘ d - 
~~ 

< 4 • ~~~, load the cell corresponding to disparit y

level d in the network.

For surfaces whose disparity does not oscillate too muc h or too

densely, the val ue ,~ - 0.5 will lead to satisfactory results. The

final state of the network establishes a correspondence between items

in the left and right images , but their associated disparity is read

not from the network (I.e. 4) but directly from the input (i.e. ~~).

Confusions may of course arise in the correspondence established by the

— - —— —~~~ - -— 5 -5 -— ~~~5 _ _ s-—~~~~~~~~ .-~~c5- 5 5 -_________________________________ — 
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network if the value of d spans the disparity range too coarsely.

In order to deal with surfaces that are less well-behaved , one can

incorporate some hysteresis Into the loading rules. The loading

process then consists of the following steps:

5.6.2 Load cells according to 6.6.1 wIth ,
~ - 

0.3 (say).

5.6 .3 Moving across the image (z. U) in a spatially ordered way, i f

possible match (z, y, ~)was not loaded by 6.6.2, adopt the following

procedure:

Let d = Integral part of ~~~~, d • I • C. Examine (z, u)
neighborhoods of (x. u. C) and of (z. u. d ) in the network as it

is loaded so far .  Assign the current match to that 4 whose

neighborhood contains more loaded cells, if one of them does. Else

load this point according to 6.6.1 with ip 0.5.

This process will load most images in satisfactory way, and the

read-out procedure is similar to that of the previous case.

6 A mathem atio~ 11y traotab le vera ion of the al gorithm

A suitabl e choice of the parameter values and of the loading rules

of t he  a l g o r i t h m  al lows a complete mathematical analys is  of i t s

a sy mpto t i c  behavior. In this  section we introduce this  “ s t r ic t”

- - ii - - - 

- 
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version of the algorithm and we characterize rigorously its properties.

The actual  performance of this version of the algorithm for various

random dot stereog rams will be then compared with the original

algorithm.

6.1 Loading conditions

The i n i t i a l  state C0 of the network is loaded from the stereograms

L. Il in a way similar to the previous case but according to eq. 6.1.1

(instead of eq. 2.1.1).

6. 1.1 C~~~14
where 1. 1 = 0. 0 = 1, 1. 0 - 0. 1 - 0.

This l oading rul e can be easily e.~tended to cases in which more than

two features are present. It is enough to define

6.1.2 z

whe r e f 1 and J ~ . (I ~ j) are two different features. The case when

only  two fea ture s  are present clearly poses the hardest matching
-

~~ problem.  We shall later compare thi s  loading rule wi th  the original

eq. 2.1.1 and discuss their  relative merits  for real images.

I
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6.2 The algorithm

The relat ion betwen states at time s t and t#2 is given by (compare

eq. 1.1.1)

6.2.2 C
~~~;d 

= olinfi ~~ 
C
~

I Y S ;dI i HJ - C Z C
~~

s ,y s ;dI

x ’ ,y ’ ,d’ cS(x,y,d) x ’ ,y ’ ,d’~ O(x ,y,d)

where H is a number that represents the “saturation” value for the

cxci tat ion.

6.3 Choice of parameter values

In  th i s  case the l oading rules lead, for random dot stereograms

with two features , to a density of 1 for the “on ” cells on the

“ correct” diagonal segments and , correspondin gly, to a density of

• (1 - v)2 for the “on” cells on the “wrong” diagonal segments (v is

the dens i ty  of l ’ s in the input images) . When p = 0.5 , the densi ty  of

the wrong cells is also 0.5; for smaller or larger p the density is

higher .  The idea behind this approach is to choose parameter values

for  the f i r s t  i te ra t ion  that “ k i l l ”  most of the “wrong ” cells (and of

course some of the “ r ight ” ones) ; from the second i terat ion on , the

parameter values are such to ensure “ f i l l i n g - in ” of the r i gh t  diagonal

segments , a l lowing,  at the same time , a satisfactory mathematical

a n a l y s i s  of the evolution of the network ’s state. This approach , which  -

‘

is carr ied out in the next two sections , leads to the fo l lowin g

parameter values:

____ ______ - -
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-

- 
(

6.3.1 S and 0 are as in fig. 2, D - 7 and H - 5 as before. Self-

exci ta t ion  is now included but the C0 term i s omitted. We therefore
w r i t e  E - 13 instead of 12.

6.3.2 - I t e ra t ion  1~
11 =. 13 (so that the m l  operation can be neglected)

• - 0. 2
8 10.75

6 3.3 Second and subsequent iterations,

H =  7

a 4. 0

8 — 3. 5

6.4 Pro babiListic analysts of the first iteration

be shall assume that the inputs have the properties 4.1.1 and

4.1.2. A s in section 4. 1, we distinguish several populations of cells

which are homogeneous with respect to the interaction structure: the

populations are again denoted by 0, 1, 11, 10, 00 according to their

respective inputs from the two images (see section 2), and p0, pp etc.

denote the probability that a cell in the respective population is “on”

after the first iteration. In this case the formulae for the solution

layer are:

-~~~~~~~ - 
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13-s

P1 12C1.v~(l -

13-s

i2Ct~~ 
—

1=0

For the “wrong” layers (writing u - • (1 - ,,)2), the formulae are

— 
k+1—0 -2

~l1 l2Ck ~
,k(1_ ~)12-k 10C~ ~

1 (1~~)
1O_ i

k=0 1=0

k+1-e —2

• ~~~ (1 )  
~

k=0 - 1=4~

- lnf ~~~ -2) 5 lnf (~ ! -2)-i ,5

Pio ’ l2Cku (1-)i) Z 5C1v
1 (1- v)5~~~~ 5c~ (i-v)~ v5

~~

Therefore the probability that a cell in the solution layer is

“on” after the first step Is

• 
~1~ 

• p~.(1 —

and the probability that a cell off the solution layer is “on ” a f t e r

the f i r s t  step is

P1, ‘ ~~~1i 
• 2.(1 — P)PJO • (1 - p)2p00.

These equations can be used to find suitabl e parameter values. The

parameters given in the previous section yield the values for ~r 
and P~

5- - i— -~~~~~~~~ 5.— ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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shown in table 3.

6.5 Equivalent rules

The parameter values from the second iteration on imply the

following main “rules ” for the algorithm:

6.5.1 one “on” cell in the inhibi tory neighborhood always suffices

k i l l  an “on ” cell

6.5.2 without  inhibi t ion , at least three excitatory “on” cells are
needed for “ survival” of an “on ” cell and four for its “bir th ” .

6.6 Analysts of the second iteration

Table 3 gives the densit ies 
~r 

and p
~ 

after  the f i r s t  i te ra t ion .

Only  for the f i r s t  i terat ion can a probabi l is t ic  analysis provide a

reliable estimate of the density of “on” ce ll s on the solut ion surface.

As in our earlier analysis (table 1), it becomes unreliable for the

second iteration , because clusters of “on” cells can be expec ted to
form in the solution layer (see figure 14 below). Rule 6.6.1 implies ,

howe ver , that  “wrong ” clusters wi l l  disapp ear af ter  the second

iteration , unl ess they consist of at least four elements. Moreover,

these elements must in practise be very close together for each to

support the other three. in addit ion , according to rule 6.6.2, none of

them can l ie  in the inhibi to ry  neighbo r hood of other “on ” cells (for

~ 
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TABLE 3. The behavior of the mathematica lly tractable of the algori thm ,
together with the probabilistic theory of the f i rs t  i teration ,
for the two stereograms exhibited in figures Ma and b .

3a. ~~= 0 . 5, E = 1 3 , D = 7

0 H Iteration 
~r ~w ~~ P1 P00 P10 P 11

3.2 10.75 13.0 
‘

~ .9998 .0017 .9998 .9998 .0023 .0011 .OO23 TheorL

_ _ _ _  
1 .99 .0003 .99 .98 .0008 0 .0004 _~~~~rJt h’n

4.0 3.75 7.0 _
~
___ .?. .99 _ _ 0 .99 .99 0 0

3 1.0 0 LO 1.0 0 0 0

3b. v 0.25, E 13, D = 7

H Iteration 
~r 

p0 
— 

p
1 

p00 p10 ____

0.2 10.75 13.0 .976 .0078 . 968 1.0 .0039 .0015 ~~~~~~eory

1 .96 ~ 002 .95 1.0 .002~~~~~~003 ~~O 2 A ~~~~~thm

4.0 3.5 7.0 2 .98 0 .98 .97 0 0 0

3 1.0 0 1.0 1.0 0 0

—-5- -—
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‘4

ins tance  on the solution layer where the density of on cells is

relatively high , see table 3). We argue that the probabil i t y of such

situations is very small (actually much smaller than in the case

considered in section 4.4). If this occurs it can be attributed to an

accidental correlation in the images. In this sense extended clusters

are in fact “right” solution regions.

6.7 Asymptotic analysis - .

The probabi l i s t ic  analy sis  of the f i r s t  i terat ion (table 3) shows

tha t  one can assume tha t , from the second iteration onwards, there are

no wrong “on ” cells. I t  remains now to show that the density of “on”

c e l l s  on the solution layer is high enough to allow asymptotic filling —

in of the “right” surfaces. We prove the following:

6.7.1 Filling—tn Proposition. Assume that (at some iteration a)

there  are no “on” cells off a given layer (diagonal), and that the

dens i ty  of “on ” cells on th is  layer exceeds 0. 4375 - 7/16. Then,

In the asymptotic configuration , there are no “of f ”  cells on this

layer.

Proof: Divide the solution plane Into squares of 4 by 4 cells (we

neglect boundaries). At least one of these squares must contain 8 “on ”

cells, for, otherwise, every square would contain at most 7 “on” cells
y ie ld in g  a densi ty of at most 7/16 , in contradiction w i t h  the

hyp othesis .  This square will fill up with “on” cells. (This can be

- 
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seen by examining the various possibl e ways in which the 8 cel ls  can be

distributed , and we leave it as an exercise for the reader). Starting

from this square, the whole plane w i l l  asymptotically be filled by “on ”

cells (since, by hypothesis, no i n h ib i t or y cells need be considered).

6,8 Invariant states and matching rules

The matching rules were defined in section 3. States that -satisfy

the matching rules with the present parameter values are shown in fig.

12. In view of the rules 6.6.1 and 6.6.2, the following clearly hold:

1) Configurations that satisfy the matching rules (fig. 12) are

invar iant.

ii ’~, Conversely, invariant configurations clearly have to obey the

uniqueness condition (because of 6.6.1). The probabilistic analysis of

the second step, together with the “filling-in ” proposition 6.7.1,

ensures in practise that there will be no holes2 in the asymptotic

invariant configurations. 
-

6.9 Asymptotic Liapuno, description

BesIdes the Invar iant  asymptotic configur ation , l i m i t  cy cles of

the type described in figure 13 may also occur. Thus the previous

description of asymptotic invariant states is nit complete. We provide

here an asymptotic analysis In terms of a Liapunov-like function which

also encompasses such non-invariant states.

For a given state Ci, we define F(Ci) to be the number of “on”

L—l.---- .-r - - .w.—,.- 5- 
-~~~~~ -~~~—. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - —~~~~~
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12. With the modified parameters, cells cannot survive against one
Inhibition. Hence stable states satisfy the uniqueness condition ,
because no overlap is possible (compare figure 5).
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I

cells having no “on” cells in their inhibitory neighborhood. We call

an “on ” cell  that  has less than three “on ” cells In i ts  exci ta tory

neighborhood a “ sol i tary cell” . Observe that sol i tary  cells can never

be “born ” and that , af ter  a f in i t e  number of i terations , all so l i t a ry

cells will have disappeared.

6.9.1 Growth proposition. Aft er  a finite numbe r of iteratIons , the

func t ion  i ---) F(C1) is non-decreasing.

Proof: After  a f i n i t e  number of i terat ions t , all sol i tary cel ls  have

died out. Let us consider the transit ion from Ct to CDI. If a new

cell is born , rule 6.6.1 implies  that It cannot l ie in the inhibitor y

neighborhood of an already present “on ” cell. Thus F w i l l  not decrease

(from Ct to C1 1 ). If a cell dies out, it cannot be a sol itary cell.

Therefore it must have had an “on” cell In its inhibitory neighborhood

at iteration i. Thus F will not decrease.

The growth of F adequately describes the filling -in process,

respecting at the same time the “uniqueness ” matching rule.
The growth proposition implies that:

6.9.2 For any initial configuration C0, the limit Li., F(Ct) z F(C)

exists (since F is bounded above by the number of cells in one layer).

6.9.3 A f ter a f inite number of iterations , F(Ct) remains constant.

Thus the asymptotic behavior of the system is characterized by the

- 
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13. An oscillating solution with the modified parameters. The state
13a occurs at iterations 1. 1.2, 1.4. ... , whereas state 13b occurs at
iterat ions 1*1. 1.8. (.6,
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— following: Apart from invariant solutions , only those cycles can

(asymptotically ) occur for which F remains constant. This is a strong

restriction on the possible asymptotic oscillatory states, for it means

ti-tnt they have to be of the type shown in fig. 13. The growth

proposition by itself does not exclude for Instance the “zero ”

in v a r i a n t  state. The probabilistic analysis of the second step of the

algorithm together with the “fillin g-in ” proposition ensures, however ,

tha t invariant states as well as limit cycles will in practice have no

“holes ”.

6.10 Observations

6.10.1 Figure 14 shows the performance of the algorithm in this form

for a few different patterns and pattern densities. A comparison with

figure 8 reveals that the type of “strategy ” for achIevIng a successful

matching is different: Firstly, wrong cells are drastically eliminated

at the expense of losing many right cells, and then filling-in of the

s u r v i v i n g  surfaces takes place. This contrasts with the more

complicated “strategy ” revealed in figs. 3 — 6 of Marr 6 Poggio 1976.

It is remarkable how, while the basic structure of the algorithm

remains the same, a change of parameter values and loading conditions

can bring about so deep a change in the algorithm ’s behavior.

6.10.2 Because of the rules of the present algorithm , especially rul e

6.6.1, the sharpest corner capable of surviving (of course under no

inhibitions ) is limited only by the need for an “on” cell to have at

‘
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14. The behavior of the algorithm with modified parameters. The
densities are 50% (14a) and 25% (14b). The parameters are as stated in
Section 6.3, and in table 3. 14c compares the two sets of parameters
on a stereogram of a star that contains arms of various angles. The
original parameters tend to give a more accurate final configuration.
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.5

least three excitatory neighboring cells. This allows a 45 degree

corner.

6.10.3 ?lin imunt size vs. disparity. Aga in because of rule 6.5.1, the

minimum resolvable area of a small pattern against  a background does

not depend on disparity. It is given by the minimum self-supporting

configuration (four adjacent cells , from rule 6.6.2) .
This contrasts sharply with the property discussed in section 54,

where the minimum size has a characteristic dependence on disparity.

6.10.4 Loading conditions . While the present loading rule is

characterized by

6.10.4.1 f ~J ~ ~~j, 
where f

~ 
is a feature and is the

Kronecker 1,

the previous l oading rule (section 2) can also be characterized by

equation 6.1.2, with the convention that is also zero when either i

or I are zero. In other words the “null” feature has a special status

~
I
~
fj JjJ~ 

0, all j).

In  case of two-valued (0, 1) random dot stereograms , the choice of

either one of the two loading rules is somewhat arbitrary. For

densities around 0.5, the straight equation 6.10.4.1 seems to make more

sense, since the black and white dots play equivalent roles. This  is

not clear, however , at very low densities (nor at very high ones).

In the case of natura l images, more than two feature types have to
be used (for instance, l ines and edges at various orientations). In

_ _ _  _ _ _—5-- —_
~
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this case, however, not every point is labelled with a corresponding

fea ture ;  the absence of any feature at a given point is a common event.

The nu l l  feature seems to have a basically d i f fe ren t  role from the

other features. These arguments clearly support the loading conditions

used in the first part of the paper (see Marr 4 Poggio 1976). It is

clear , on the other hand, that both loading conditions may work. For

both, an Increasing number of “feature types” implies of course an

increasingly better algorithm convergence. The choice between them

depends in the end on the typical feature densities that one wants to

deal with. For natural images, quantitative estimates have only

recently become possible (Marr 1976, 1977).

7 DIscussion

7.1 A l te rna t i ve  algor i thms

The algorithm eq. 1.1.1 can be modified in various ways. One can

adopt alternative loading rules for the network as in section 6, and

one can vary the parameters over a substantial range. Such apparently

min or changes can cause considerabl e changes in the network ’s behavior ,

but often without changing the end resul t (see for instance section C’),

because they still Implement the same computational constraints.

If the geometry of the local interactions (i.e. the shape of the

excitatory and inhibitory neighborhoods) is changed, the network will

in general Implement a different computation, because the local 

- 
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constraints will have changed. If only the parameter values are

changed, our analysis (section 3) may still apply. If the geometry is

changed, our analysis will in general become irrelevant.
- 

. Interestingly, for a specific stereogram density, a non— iterative

version of our algorithm can recover disparity satisfactorily (see fig.

.14a iteration 1). John Fairfield (personal communication) suggested an

algorithm in which (1) excitation is summed independently within each

disparity layer, and (2) for each position, one selects only the most

excited of the cells in the different disparity layers. This algorithm

performs well for the case v 0.5.

7.2 Coninents on analgztng such operations

We find the style of analysis that we were forced to adopt to be

unsatisfactory for a number of reasons. Firstly, although our

arguments appear to provide a qual itatively accurate description of the

algorithms ’s behavior, the arguments are not completely rigorous. The

main reasons for this lie in the difficul ty of assessing the validity

- 

of the randomness assumptions tha t are necessar y’ for the probabilistic

ana lys i s ;  and , to a lesser extent , in the need to examine a number of
special cases in order to establish the stability of various solutions.

Secondly, our analysis is very specific to the particular

algorithm and the particular parameters. This style of proof cannot

lead to any general re sults about the convergence of such operators.

In order to overcome the first of these problems one can follow

ill
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(

the approach of section 6. The price one pays is that the analysis is

-
, valid for a narrower parameter range, which happens not to include the

original parameter values (see Marr 4 Poggio 1976). The difficul ty

with the assumption of randomness arises because of the constant

spatial structure of the operator E (eq. (1) and fig. 2c of Marr 6
Poggio 1976). It should perhaps be noted that this objection does not

apply to the similar analysis given by Marr (1971) of a cooperative

associative memory algorithiit because there the local operator had a

variable and essentially random structure.

The second of these difficulties seems to be inherent in the

nature of this type of cooperative algorithm. No general approach is

at present available. Standard approaches4 that we have tried have

failed up to now. The flavor of the difficulties is the following. A

configuration that is stable may be perturbed by changing a large

numbe r of cells without affecting its asymptotic state, provided that

the perturbed cells are well scattered and interior. On the other

hand , one fixed point  of- the algorithm can be shifted into another by

perturbing only a few cells, provided that they have a suitable

configuration. Thus, the usual distance between two configurations ,

namely the numbe r of cells having different states, does not reflect

the behavior of the algorithm. Therefore, the problem seems to be how

to incorporate the geometry of the interactions into the metric

dis tance between configurations.

It seems unlikely that one can construct a useful general theory

of algorithms of the form -

_______________________________________ _________________ ______
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7.2.1 ~~~ 
,

where L is a linear operator on the vector C, and a is a nonlinear

(coordinate-wise) function. J. H. Conway ’s game “Life” can, for
example, be written this way (see fig. 15) and with an appropriate

input pattern is Turing universal (unpublished result discovered

independently by J. H. Conway and R. W. Gosper).

This suggests that theories of this type of algorithm must take

due account of the structure of the input data and will probably be

restricted to very specific forms of eq. 7.2.1.

A mathematical understanding of the behavior of eq. 7.2.1 would

represent a breakthrough of rather general importance. Cooperative

phenomena similar to those which can be described by eq. 7.2.1 are

important in physics (Haken 1977, Kawasaki 1972, K. G. Wilson 1975) , in

development (Mostow 1975), and in biology (Eigen 1971, Marr 1971,

Richter 1976).

Furthermore , such a theory night also allow one to synthesize in a

standard way cooperative algorithms of the form of eq. 7.2.1 from an

analysis of the constraints on a computation.
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15. Conway’s game “life,” which is played on an infinite plane square
lattice, may be represented in a manner very similar to that of our
stereo operator. The excitatory neighborhood , together with
appropriate weights, is shown in iSa, and the threshold function
appears in lSb. This combination reproduces the rules of life exactly,
and these are;
(1) A cell will die at generation a.1 if C 2 or ) 3 of its 8 neighbors
are alive at generation n (death by starvation or overfeeding).
(2) A cell with exactly 2 living neighbors at generation n will be
alive at generation a.1 if and only if it is alive at generation *.(3) A ceU with exactly 3 lIving neighbors at generation n will be
alive at generation a.1.
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manipulation system. Piroot Vatan helped with MACSYMA programming.

Science k ind ly  gave permission for the reproduction of f igure 1. 0. ‘.1.

thanks the Max-P lanck Inst itut  fur Biologische Kybernetik in Tubingen

for i t s  kind hospitality during his visit there.

— Footnote s

1. In M a r r - 4  Poggio (1976) , the value of S was given as 3.0, whereas

here it  is 4. 0. The reason for the discrepancy is that the algor i thm

used to produce the stereograms for that article essentially used the - -

condition ) 8, whereas here , we use the condition � ô.

2. A configuration is “spatially stable” if it is in some sense

invariant under small perturbations (for instance each active point can

be required to belong to a 3 x 3 neighborhood of points with the same

disparity).

3. There is a hota in the network for a given u if there exist two

intersecting lines of sight neither of which contains an “on” cell.

4. The continuous version of the algorithm eq. 1. 1. 1 cannot be

described in terms of a potential dynamics. In fact the dynamical

system

55 - -55_~~~~~~~~~~~~~~~~~~- . _ ,~~~~~~~~~~~~~
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(
S

C a’(ZC) - C 1(C) (a a “smooth” threshold)

does not admit  a scalar potential function V(C) such that

1f(C)Jx y , d 8V(C)/8Cx u,d.

A necessary condit ion for this to be true is that

~CX y ;d ~~~~~~~~ 
= 

~ x ’,y’;d’ ~~~~~ 
all x ,y,d ,x ’ ,y ’ ,d

This is not true in general , because of the nonlinearity a (consider

the case in which zgd and fy’d’ are on the same disparity layer and

are reciprocally excitatory).
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